Taylor line swimming in microchannels and cubic lattices of obstacles.
نویسندگان
چکیده
Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment. In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice, the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master curve. Finally, we also report more complex trajectories within the obstacle lattice.
منابع مشابه
Solving the liner quadratic differential equations with constant coefficients using Taylor series with step size h
In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.
متن کاملNumerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles
Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...
متن کاملCubic structures, equivariant Euler characteristics and lattices of modular forms
We use the theory of cubic structures to give a fixed point Riemann-Roch formula for the equivariant Euler characteristics of coherent sheaves on projective flat schemes over Z with a tame action of a finite abelian group. This formula supports a conjecture concerning the extent to which such equivariant Euler characteristics may be determined from the restriction of the sheaf to an infinitesim...
متن کاملNumerical Study of Non-Newtonian Flow Through Rectangular Microchannels
A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 35 شماره
صفحات -
تاریخ انتشار 2016